Emily Waltz of IEEE Spectrum reports that big tech is investing in next-generation nuclear energy and small modular reactors (SMRs) that don’t yet exist on a commercial scale. Walts writes:
When Meta announced last week that it’s looking for a nuclear energy developer to power its future AI operations, it joined a growing cadre of tech companies all suddenly repeating the same refrain: We need more power—preferably carbon-free—and lots of it.
Electricity demand in the United States is expected to grow more than 15 percent over the next five years after remaining flat for the last two decades, according to a recent report from power sector consulting firm Grid Strategies. Most of the growth will be driven by the needs of data centers and their operators, who are scrambling to secure large amounts of reliable power while keeping their carbon neutral goals.
Nuclear energy fits that bill, and over the last few months, Amazon, Google, and Microsoft have all announced ambitious deals to acquire it for their operations. Some of the plans aim to secure energy in the near term from existing power plants. Others focus on the long game and include investments in next-generation nuclear energy and small modular reactors (SMRs) that don’t yet exist on a commercial scale. […]
The reactors that both Kairos and X-energy are developing run on tri-structural isotropic (TRISO) particle fuel. It’s made of uranium, carbon, and oxygen encapsulated in graphite kernels the size of a poppy seed. The kernels get loaded into golf ball-size spheres called pebbles that are also made of graphite. Each pebble contains thousands of fuel kernels. […]
Kairos will use TRISO fuel in its high-temperature, low-pressure, fluoride salt-cooled reactor. In this design, fuel pebbles in the reactor core undergo fission, generating heat that transfers to the surrounding molten salt. Heat exchangers transfer the heat to boil water and generate steam,which drives a turbine and generates electricity. The molten salt acts as an additional safety barrier, chemically absorbing any fission products that escape the pebbles, Laufer says. Kairos’ commercial reactors will each generate about 75 MW of electricity, Laufer says.
X-energy plans to use TRISO fuel is its high-temperature gas-cooled reactor. In this design, helium gas runs through the reactor core. As the fuel pebbles undergo fission, the gas extracts the heat, which is used to boil water and generates steam to drive a turbine. Each fuel pebble will constantly shuffle through the reactor, passing through about six times. “The reactor is a lot like a gumball machine,” says Benjamin Reinke, vice president of global business development at X-energy. A mechanical corkscrew drives a pebble in an auger out of the system., and the pebble is checked to see if it’s fully burned up. If not, it goes back to into the top of the reactor, he says. […]
Tech companies for the last decade have been investing in wind and solar energy too, but the power from these sources is intermittent, and may not be enough to meet the needs of power-guzzling AI.
The arrangements between big tech and small nuclear signal the beginning of a trend, says Stout. Meta’s announcement last week that it’s putting out a request for proposals for up to 4 gigawatts of nuclear power may be the most recent addition to that trend, but it’s probably not the last. Says Stout: “I expect there’s going to be more.”
Read more here.